Por que governança de ML
O Amazon SageMaker fornece ferramentas de governança específicas para ajudar você a implementar o ML de maneira responsável. Com o Amazon SageMaker Role Manager, os administradores podem definir permissões mínimas em minutos. O Amazon SageMaker Model Cards facilita a captura, a recuperação e o compartilhamento de informações essenciais do modelo, como usos pretendidos, classificações de risco e detalhes de treinamento, desde a concepção até a implantação. O Amazon SageMaker Model Dashboard mantém você em dia sobre o comportamento do modelo na produção, tudo em um só lugar. A integração do Amazon SageMaker e do Amazon DataZone facilita a simplificação do ML e da governança de dados.
Benefícios da governança de ML do SageMaker
Integrar com o Amazon DataZone
-
Controles de configuração e provisionamento
-
Pesquisar e descobrir ativos
-
Consumir ativos
-
Publicar ativos
-
Controles de configuração e provisionamento
-
Os administradores de TI podem definir controles e permissões de infraestrutura específicos para sua empresa e seu caso de uso no Amazon DataZone. Você poderá então criar um ambiente apropriado do SageMaker com apenas alguns cliques e iniciar o processo de desenvolvimento dentro do SageMaker Studio.
-
Pesquisar e descobrir ativos
-
No SageMaker Studio, você pode pesquisar e descobrir com eficiência dados e ativos de ML no catálogo de negócios da sua organização. Você também pode solicitar acesso aos ativos que talvez precise usar em seu projeto assinando-os.
-
Consumir ativos
-
Depois que sua solicitação de assinatura for aprovada, você poderá consumir esses ativos inscritos em tarefas de ML, como preparação de dados, treinamento de modelos e engenharia de atributos no SageMaker Studio usando o JupyterLab e o SageMaker Canvas.
-
Publicar ativos
-
Ao concluir as tarefas de ML, você poderá publicar dados, modelos e grupos de atributos no catálogo de negócios para governança e descoberta por outros usuários.
Defina permissões
Simplificar permissões para atividades de ML
O SageMaker Role Manager fornece um conjunto inicial de permissões para atividades e personas de ML por meio de um catálogo de políticas do AWS Identity and Access Management (IAM) pré-configuradas. As atividades de ML podem incluir preparação e treinamento de dados, e as personas podem incluir engenheiros de ML e cientistas de dados. Você pode manter as permissões básicas ou personalizá-las ainda mais com base em suas necessidades específicas.
Automatize a geração de políticas do IAM
Com algumas instruções autoguiadas, você pode inserir rapidamente estruturas de governança comuns como limites de acesso à rede e chaves de criptografia. Em seguida, o SageMaker Role Manager vai gerar automaticamente as políticas do IAM. Você pode encontrar as funções geradas e políticas associadas no console do AWS IAM.
Anexe suas políticas gerenciadas
Para adaptar ainda mais as permissões ao seu caso de uso, anexe suas políticas do IAM gerenciadas ao perfil do IAM criado com o SageMaker Role Manager. Você também pode adicionar etiquetas para ajudar a identificar e organizar as funções entre serviços da AWS.
Simplifique a documentação
Capturar informações de modelos
O SageMaker Model Cards é um repositório de informações de modelo no console do Amazon SageMaker e ajuda a centralizar e a padronizar a documentação do modelo para que você possa implementar o ML com responsabilidade. Você pode preencher automaticamente os detalhes do treinamento, como conjuntos de dados de entrada, ambientes de treinamento e resultados de treinamento, para acelerar o processo de documentação. Você também pode adicionar detalhes como a finalidade do modelo e metas de performance.
Visualize resultados de avaliações
Você pode anexar resultados de avaliações de modelos, como métricas de viés e qualidade, ao seu cartão de modelo e adicionar visualizações, como gráficos, para obter informações importantes sobre a performance dos modelos.
Compartilhe cartões de modelo
Você pode exportar seus cartões de modelo para um formato PDF para facilitar o compartilhamento com as partes interessadas da empresa, equipes internas ou clientes.
Monitoramento de modelos
Acompanhe o comportamento dos modelos
O SageMaker Model Dashboard fornece uma visão geral abrangente de modelos e endpoints implantados, para que você possa rastrear recursos e modelar violações de comportamento em um só lugar. Você pode monitorar o comportamento do modelo em quatro dimensões: qualidade dos dados, qualidade do modelo, desvio de viés e desvio de atribuição de recursos. O SageMaker Model Dashboard monitora o comportamento por meio da sua integração com o Amazon SageMaker Model Monitor e o Amazon SageMaker Clarify.
Automatize alertas
O SageMaker Model Dashboard fornece uma experiência integrada para configurar e receber alertas sobre trabalhos de monitoramento de modelos ausentes e inativos e desvios no comportamento dos modelos.
Solucione problemas com desvios de modelos
Você pode inspecionar ainda mais os modelos individuais e analisar os fatores que afetam a performance deles ao longo do tempo. Em seguida, pode entrar em contato com profissionais de ML para tomar medidas corretivas.